第13章 如果你一辈子只能喝一口鸡汤
r />   这个是自然数学法则的最优解了,换句话说,你拿8414张真猫图和1586张似猫非猫图去喂,机器吃完这1万个大数据之后,进步量也会比岗前前一组略低。

  这个数据具体怎么来的呢?是人类算法学家,从2010年,谷歌开始操练深度学习以来,不断反复试验,全人类算法专家共同实验了八年,摸出来的。

  更奇妙的是,地球人后来做了更多深入实验,发现这个学习效率机制,真的不仅适用于机器学习,也适用于人类大脑。

  在“试错型学习”,或者说早期认知方面,人脑和模拟人脑宏观运作规律表现的深度学习,是一致的。

  地球人当时设计的人体实验,主要是拿婴儿做实验,因为可以尽量减少干扰项。选取原本认知发育水平差不多的婴儿,让他们认图片训练,就跟现在一两岁的小孩,看画本教他们什么是猫、什么是狗。这个训练跟深度学习的机器视觉训练,是很相似的。

  然后放大样本容量,给每个婴儿的画片对错比例不同。结果最终果然是错误率接近%的婴儿,认知新事物进步速度最快。成年人的话,实验暂时还没法设计,因为干扰项太多。

  这就最终引申出一个惊人的结论:怎么样的学习,才是最高效?最容易进入心流的?

  结论就是:对于活人而言,也是一个知识点里,有15%点几的内容,是你不懂的,还有85%的基础知识,是你懂的。

  这时候,你的好奇心会被调动到最高,你对完全未知的恐惧心和排斥感也会压低到一个恰到好处的水平。

  那么多学渣为什么学渣?为什么学习效率低?还不是因为他的成绩,并没有刚好契合老师教育难度的“懂与不懂对错比例”?

  为什么有那么多段子,说数学差生当年只是数学课上捡了一下笔,再次抬起头已经不懂老师在讲什么了?

  这段子虽然是段子,但理科学渣很多都是一点一滴从学习区脱节到恐慌区,最后放弃治疗的。

  这时候如果有个家教,知道你跌入恐慌区了,肯了解你,摸清你的水平,给你一个你最舒服的学习区对错比例节奏、略微调低难度,说不定这些人的一辈子是可以拯救的。

  很多有经验的金牌老师,其实就是干的这个活儿,因为书上那点知识点,老师其实都懂。好老师和差老师的区别,就在于好老师经验丰富,稍微几道题一测,就知道孩子目前是什么水平、落后到什么程度、该用什么样的难度和节奏去因材施教。

  只不过,大多数好老师只是凭经验,没有从科学的角度系统、精确总结过数据。